mous quote of Heisenberg: "The invisible elementary particle of modern physics does not have the property of occupying space any more than it has properties like color or solidity. Fundamentally, it is not a material structure in space and time but only a symbol that allows the laws of nature to be expressed in especially simple form."

PROBLEMS

5.1 The Pilot Waves of de Broglie

1. Calculate the de Broglie wavelength for a proton moving with a speed of $10^{6} \mathrm{~m} / \mathrm{s}$.
2. Calculate the de Broglie wavelength for an electron with kinetic energy (a) 50 eV and (b) 50 keV .
3. Calculate the de Broglie wavelength of a $74-\mathrm{kg}$ person who is running at a speed of $5.0 \mathrm{~m} / \mathrm{s}$.
4. The "seeing" ability, or resolution, of radiation is determined by its wavelength. If the size of an atom is of the order of 0.1 nm , how fast must an electron travel to have a wavelength small enough to "see" an atom?
5. To "observe" small objects, one measures the diffraction of particles whose de Broglie wavelength is approximately equal to the object's size. Find the kinetic energy (in electron volts) required for electrons to resolve (a) a large organic molecule of size 10 nm , (b) atomic features of size 0.10 nm , and (c) a nucleus of size 10 fm . Repeat these calculations using alpha particles in place of electrons.
6. An electron and a photon each have kinetic energy equal to 50 keV . What are their de Broglie wavelengths?
7. Calculate the de Broglie wavelength of a proton that is accelerated through a potential difference of 10 MV .
8. Show that the de Broglie wavelength of an electron accelerated from rest through a small potential difference V is given by $\lambda=1.226 / \sqrt{V}$, where λ is in nanometers and V is in volts.
9. Find the de Broglie wavelength of a ball of mass 0.20 kg just before it strikes the Earth after being dropped from a building 50 m tall.
10. An electron has a de Broglie wavelength equal to the diameter of the hydrogen atom. What is the kinetic energy of the electron? How does this energy compare with the ground-state energy of the hydrogen atom?
11. For an electron to be confined to a nucleus, its de Broglie wavelength would have to be less than $10^{-14} \mathrm{~m}$. (a) What would be the kinetic energy of an electron confined to this region? (b) On the basis of this result, would you expect to find an electron in a nucleus? Explain.
12. Through what potential difference would an electron have to be accelerated to give it a de Broglie wavelength of $1.00 \times 10^{-10} \mathrm{~m}$?

Are you satisfied with viewing science as a set of predictive rules or do you prefer to see science as a description of an objective world of things - in the case of particle physics, tiny, scaled-down things? What problems are associated with each point of view?

5.2 The Davisson-Germer Experiment

13. Figure P 5.13 shows the top three planes of a crystal with planar spacing d. If $2 d \sin \theta=1.01 \lambda$ for the two waves shown, and high-energy electrons of wavelength λ penetrate many planes deep into the crystal, which atomic plane produces a wave that cancels the surface reflection? This is an example of how extremely narrow maxima in high-energy electron diffraction are formed-that is, there are no diffracted beams unless $2 d \sin \theta$ is equal to an integral number of wavelengths.

Figure P5.13
14. (a) Show that the formula for low-energy electron diffraction (LEED), when electrons are incident perpendicular to a crystal surface, may be written as

$$
\sin \phi=\frac{n h c}{d\left(2 m_{\mathrm{e}} c^{2} K\right)^{1 / 2}}
$$

where n is the order of the maximum, d is the atomic spacing, m_{e} is the electron mass, K is the electron's kinetic energy, and ϕ is the angle between the incident and diffracted beams. (b) Calculate the atomic spacing
in a crystal that has consecutive diffraction maxima at $\phi=24.1^{\circ}$ and $\phi=54.9^{\circ}$ for $100-\mathrm{eV}$ electrons.

5.3 Wave Groups and Dispersion

15. Show that the group velocity for a nonrelativistic free electron is also given by $v_{\mathrm{g}}=p / m_{\mathrm{e}}=v_{0}$, where v_{0} is the electron's velocity.
16. When a pebble is tossed into a pond, a circular wave pulse propagates outward from the disturbance. If you are alert (and it's not a sleepy afternoon in late August), you will see a fine structure in the pulse consisting of surface ripples moving inward through the circular disturbance. Explain this effect in terms of group and phase velocity if the phase velocity of ripples is given by $v_{\mathrm{p}}=\sqrt{2 \pi S / \lambda \rho}$, where S is the surface tension and ρ is the density of the liquid.
17. The dispersion relation for free relativistic electron waves is

$$
\omega(k)=\sqrt{c^{2} k^{2}+\left(m_{\mathrm{e}} c^{2} / \hbar\right)^{2}}
$$

Obtain expressions for the phase velocity v_{p} and group velocity v_{g} of these waves and show that their product is a constant, independent of k. From your result, what can you conclude about v_{g} if $v_{\mathrm{p}}>c$?

5.5 The Heisenberg Uncertainty Principle

18. A ball of mass 50 g moves with a speed of $30 \mathrm{~m} / \mathrm{s}$. If its speed is measured to an accuracy of 0.1%, what is the minimum uncertainty in its position?
19. A proton has a kinetic energy of 1.0 MeV . If its momentum is measured with an uncertainty of 5.0%, what is the minimum uncertainty in its position?
20. We wish to measure simultaneously the wavelength and position of a photon. Assume that the wavelength measurement gives $\lambda=6000 \AA$ with an accuracy of one part in a million, that is, $\Delta \lambda / \lambda=10^{6}$. What is the minimum uncertainty in the position of the photon?
21. A woman on a ladder drops small pellets toward a spot on the floor. (a) Show that, according to the uncertainty principle, the miss distance must be at least

$$
\Delta x=\left(\frac{\hbar}{2 m}\right)^{1 / 2}\left(\frac{H}{2 g}\right)^{1 / 4}
$$

where H is the initial height of each pellet above the floor and m is the mass of each pellet. (b) If $H=2.0 \mathrm{~m}$ and $m=0.50 \mathrm{~g}$, what is Δx ?
22. A beam of electrons is incident on a slit of variable width. If it is possible to resolve a 1% difference in momentum, what slit width would be necessary to resolve the interference pattern of the electrons if their kinetic energy is (a) 0.010 MeV , (b) 1.0 MeV , and (c) 100 MeV ?
23. Suppose Fuzzy, a quantum-mechanical duck, lives in a world in which $h=2 \pi \mathrm{~J} \cdot \mathrm{~s}$. Fuzzy has a mass of 2.0 kg and is initially known to be within a region 1.0 m wide.
(a) What is the minimum uncertainty in his speed?
(b) Assuming this uncertainty in speed to prevail for 5.0 s , determine the uncertainty in position after this time.
24. An electron of momentum p is at a distance r from a stationary proton. The system has a kinetic energy $K=p^{2} / 2 m_{\mathrm{e}}$ and potential energy $U=-k e^{2} / r$. Its total energy is $E=K+U$. If the electron is bound to the proton to form a hydrogen atom, its average position is at the proton but the uncertainty in its position is approximately equal to the radius, r, of its orbit. The electron's average momentum will be zero, but the uncertainty in its momentum will be given by the uncertainty principle. Treat the atom as a one-dimensional system in the following: (a) Estimate the uncertainty in the electron's momentum in terms of r. (b) Estimate the electron's kinetic, potential, and total energies in terms of r. (c) The actual value of r is the one that minimizes the total energy, resulting in a stable atom. Find that value of r and the resulting total energy. Compare your answer with the predictions of the Bohr theory.
25. An excited nucleus with a lifetime of 0.100 ns emits a γ ray of energy 2.00 MeV. Can the energy width (uncertainty in energy, ΔE) of this $2.00-\mathrm{MeV} \gamma$ emission line be directly measured if the best gamma detectors can measure energies to $\pm 5 \mathrm{eV}$?
26. Typical measurements of the mass of a subatomic delta particle ($m \approx 1230 \mathrm{MeV} / c^{2}$) are shown in Figure P5.26. Although the lifetime of the delta is much too short to measure directly, it can be calculated from the energy-time uncertainty principle. Estimate the lifetime from the full width at half-maximum of the mass measurement distribution shown.

Figure P5.26 Histogram of mass measurements of the delta particle.

5.7 The Wave-Particle Duality

27. A monoenergetic beam of electrons is incident on a single slit of width 0.50 nm . A diffraction pattern is
