QUESTIONS

1.

The probability density at certain points for a particle

in a box is zero, as seen in Figure 6.9. Does this imply

that the particle cannot move across these points?

Explain.

. Discuss the relation between the zero-point energy and
the uncertainty principle.

. Consider a square well with one finite wall and one infi-
nite wall. Compare the energy and momentum of a par-
ticle trapped in this well to the energy and momentum
of an identical particle trapped in an infinite well with
the same width.

. Explain why a wave packet moves with the group velocity
rather than with the phase velocity.

. According to Section 6.2, a free particle can be repre-

sented by any number of waveforms, depending on the

PROBLEMS

6.1 The Born Interpretation

1. Of the functions graphed in Figure P6.1, which are
candidates for the Schrédinger wavefunction of an ac-
tual physical system? For those that are not, state why
they fail to qualify.

2. A particle is described by the wavefunction
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values chosen for the coefficients a(k). What is the
source of this ambiguity, and how is it resolved?

. Because the Schrodinger equation can be formulated in
terms of operators as [H]W = [E]W, is it incorrect to con-
clude from this the operator equivalence [H] = [E]?

. For a particle in a box, the squared momentum p? is a
sharp observable, but the momentum itself is fuzzy. Ex-
plain how this can be so, and how it relates to the classi-
cal motion of such a particle.

. A philosopher once said that “it is necessary for the very
existence of science that the same conditions always pro-
duce the same results.” In view of what has been said in
this chapter, present an argument showing that this
statement is false. How might the statement be reworded
to make it true?
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(a) Determine the normalization constant A. (b) What
is the probability that the particle will be found be-
tween x = 0 and x = L/8 if a measurement of its posi-
tion is made?

6.2 Wavefunction for a Free Particle

3. A free electron has a wavefunction
P(x) = Asin(5 X 1010 x)

where x is measured in meters. Find (a) the electron’s
de Broglie wavelength, (b) the electron’s momentum,
and (c) the electron’s energy in electron volts.

4. Spreading of a Gaussian wave packel. The Gaussian
wave packet W(x, 0) of Example 6.3 is built out of
plane waves according to the amplitude distribu-
tion function a(k) = (Ca/\/;)exp(—anQ). Calculate
W (x, t) for this packet and describe its evolution.

6.3 Wavefunctions in the Presence of Forces

5. In a region of space, a particle with zero energy has a
wavefunction

P(x) = Axe /1

(a) Find the potential energy Uas a function of x.
(b) Make a sketch of U(x) versus x.
6. The wavefunction of a particle is given by

Y(x) = Acos(kx) + Bsin(kx)

where A, B, and k are constants. Show that ¢ is a solu-
tion of the Schrédinger equation (Eq. 6.13), assuming
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CHAPTER 6

the particle is free (U = 0), and find the corresponding
energy E of the particle.

The Particle in a Box

. Show that allowing the state n = 0 for a particle in a

one-dimensional box violates the uncertainty principle,

AxAp=h/2.

. A bead of mass 5.00 g slides freely on a wire 20.0 cm

long. Treating this system as a particle in a one-dimen-
sional box, calculate the value of n corresponding
to the state of the bead if it is moving at a speed of
0.100 nm per year (that is, apparently at rest).

. The nuclear potential that binds protons and neutrons

in the nucleus of an atom is often approximated by a
square well. Imagine a proton confined in an infinite
square well of length 107° nm, a typical nuclear diame-
ter. Calculate the wavelength and energy associated
with the photon that is emitted when the proton un-
dergoes a transition from the first excited state (n = 2)
to the ground state (n = 1). In what region of the elec-
tromagnetic spectrum does this wavelength belong?

An electron is contained in a one-dimensional box of
width 0.100 nm. (a) Draw an energy-level diagram for
the electron for levels up to » = 4. (b) Find the wave-
lengths of all photons that can be emitted by the elec-
tron in making transitions that would eventually get it
from the n = 4 state to the n = 1 state.

Consider a particle moving in a one-dimensional box
with walls at x = —L/2 and x = L/2. (a) Write the wave-
functions and probability densities for the states n = 1,
n=2, and n= 3. (b) Sketch the wavefunctions and
probability densities. (Hint: Make an analogy to the case
of a particle in a box with walls at x = 0 and x = L.)

A ruby laser emits light of wavelength 694.3 nm. If this
light is due to transitions from the n = 2 state to the
n = 1 state of an electron in a box, find the width of
the box.

. A proton is confined to moving in a one-dimensional

box of width 0.200 nm. (a) Find the lowest possible en-
ergy of the proton. (b) What is the lowest possible en-
ergy of an electron confined to the same box? (c) How
do you account for the large difference in your results
for (a) and (b)?

A particle of mass m is placed in a one-dimensional box
of length L. The box is so small that the particle’s
motion 1is relativistic, so that E = [)2/ 2m is not valid.
(a) Derive an expression for the energy levels of the
particle using the relativistic energy—momentum rela-
tion and the quantization of momentum that derives
from confinement. (b) If the particle is an electron in a
box of length L = 1.00 X 1072 m, find its lowest possi-
ble kinetic energy. By what percent is the nonrelativistic
formula for the energy in error?

. Consider a “crystal” consisting of two nuclei and two

electrons, as shown in Figure P6.15. (a) Taking into ac-
count all the pairs of interactions, find the potential
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QUANTUM MECHANICS IN ONE DIMENSION

energy of the system as a function of d. (b) Assuming
the electrons to be restricted to a one-dimensional box
of length 3d, find the minimum kinetic energy of the
two electrons. (c) Find the value of d for which the
total energy is a minimum. (d) Compare this value of d
with the spacing of atoms in lithium, which has a den-
sity of 0.53 g/cm? and an atomic weight of 7. (This type
of calculation can be used to estimate the densities of
crystals and certain stars.)
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An electron is trapped in an infinitely deep potential well
0.300 nm in width. (a) If the electron is in its ground
state, what is the probability of finding it within 0.100 nm
of the left-hand wall? (b) Repeat (a) for an electron in
the 99th excited state (n = 100). (c) Are your answers
consistent with the correspondence principle?

An electron is trapped at a defect in a crystal. The de-
fect may be modeled as a one-dimensional, rigid-walled
box of width 1.00 nm. (a) Sketch the wavefunctions
and probability densities for the =1 and n =2
states. (b) For the n =1 state, find the probability
of finding the electron between x; = 0.15 nm and
x9 = 0.35 nm, where x = 0 is the left side of the box.
(c) Repeat (b) for the n = 2 state. (d) Calculate the en-
ergies in electron volts of the » = 1 and n = 2 states.
Find the points of maximum and minimum probability
density for the nth state of a particle in a one-dimen-
sional box. Check your result for the n = 2 state.

A 1.00-g marble is constrained to roll inside a tube of
length L = 1.00 cm. The tube is capped at both ends.
Modeling this as a one-dimensional infinite square
well, find the value of the quantum number » if the
marble is initially given an energy of 1.00 m]J. Calculate
the excitation energy required to promote the marble to
the next available energy state.

6.5 The Finite Square Well
20.

Consider a particle with energy E bound to a finite
square well of height Uand width 2L situated on —L =
x = +L. Because the potential energy is symmetric
about the midpoint of the well, the stationary state
waves will be either symmetric or antisymmetric about
this point. (a) Show that for E < U, the conditions for
smooth joining of the interior and exterior waves lead
to the following equation for the allowed energies of
the symmetric waves:

ktan kL = « (symmetric case)



